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Abstract. We consider the WKB approximadon to the non-relativistic Schrodinger equation for 
an N-partide system with a possibly timedependent potential. A recent rigorous and explicit 
error estimate given by Molzahn is investigated by means of examples. To this end we extend 
the class of potentials considered by M o M n  and find that his estimates are almost optimal. 
However, these examples also reveal an inherent dmwback of the WKB method. 

1. Introduction 

According to the approximation scheme known among physicists as the Wentzel-Kramers- 
Brillouin (WKB) approximation, the exact solution @ of some wave equation is approximated 
by +WKB which can be obtained by solving the corresponding classical problem. 

A heuristical derivation of the WKB scheme can he obtained by a formal series expansion 
of the exact solution in terms of the ‘parameter’ f i ,  cf [5]. In contrast to the vast amount of 
literature on the WKB method, very little is known about the error of approximation, say, 
IIq(., r) -@wKB(., t)ll, where [ I .  II denotes the dx)-norm, and, for example, d = 3 N .  
But, of course, exact results on rhe error estimate would be very useful for assessing the 
applicability of the method to concrete problems. Maslov and Fedoriuk [5] obtained exact 
estimates for a large class of problems which for the lowest-order approximation is 

for some C > 0 and 8, T sufficiently small. Because the constants involved are not specified 
this result represents some kind of justification of the hm approximation but is of little use 
for concrete applications. The first rigorous and explicit estimate has, to our knowledge, 
been given by Molzahn [6].  He considers the non-relativistic Schrodinger equation for N 
particles with mass m and potential V(x, r), o E I W S N ,  and an initial wavefunction of the 
form 

His result is, essentially, 

fit 
ll$(., t )  - $wKB(., t)Il c C@)- 

m 
for t E Q (3) 

where S2 and C(t) are given explicitly in terms of 9 and V, see below, 
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In this paper we want to apply and scrutinize Molzahn's result for concrete examples. 
The purpose is to improve the physical interpretation of the estimate (3) and to better 
understand the nature of the error in the WKB approximation. A related question is whether 
the RHS term in (3) really represents the main part of the error, i.e. whether Molzahn's 
estimate is optimal or 'almost' optimal for numerical purposes. Hence we should consider 
examples where @ and and thus the exact Lz-norm difference could be explicitly 
calculated. Here we are confronted with the difficulty that Molzahn, in order to apply his 
technique of a constructive series representation of the classical action, developed in [7], has 
to impose strong restrictions to the potential V(r ,  t). They are stronger than boundedness 
and real analyticity and essentially require that the Fourier transform of V decreases 'very' 
rapidly. Examples of potentials falling into the Molzahn class are Bessel functions of integer 
order, sin"(ux)/x", and sin(hx), but no non-trivial polynomial will be in this class. From 
the examples only sin(hx) is 'in principle' solvable but the calculations would become very 
complicated. We do not know, for example, how to compose a wavepacket out of Mathieu 
functions, etc. 

However, there is another way to get solvable examples, namely to extend the Molzahn 
class in such a way that (3) remains valid. We may consider sequences of Molzahn potentials 
V(*) converging (in some appropriate sense) towards V, which is not in the Molzahn class, 
such that @(A), &&, a(*) and C(*) converge and their limits satisfy (3). This appears as 
a natural way to extend the Molzahn class. We will indicate the technical details of the 
procedure below. 

It turns out that at least linear and quadratic potentials can be obtained by extending 
the Molzahn class. These are, of course, exactly solvable and we can compute Q ,  C ( t )  
for these cases and compare the exact norm difference of @ and @- for, say, Gaussian 
wavepackets, especially coherent states. 

We will see that Molzahn's estimate is almost optimal for both examples. The reason 
is probably that his estimate correctly accounts for the first two terms in the expansion of  

- ~ . W D I I  according to powers of t ,  where the fz-term is vanishing. 
Hence, for numerical purposes, the first term already gives the correct order of magnitude 

of the approximation error. This will be illustrated by a further example ( V ( x )  = sech2(x)) 
which is not covered by Molzahn's theorem. 

Finally, we will give a physical explanation of the t-linear part of the error. It is of 
purely kinematical nature and due to the fact that the WKB approximation corresponds to an 
ensemble of particles flying in formation for a moment, whereas the exact solution diffuses 
according to the spread of momentum. At least, this interpretation is possible for the case 
of a linear potential. 

, Some remarks on notation are in order. n denotes a multi-index (nl, 112.. . . , nd) and 
In1 = xi=, ni. Let A E Cdrd be a d x d complex-valued matrix then the Hilbert- 
Schmidt norm reads llAll2 = [A&1/*. 004 denotes the matrix of spatial second 
derivations ('Hessian'). 

d 

2. WICB approximation and Molzahn's rrsult 

We consider the time-dependent Schrodinger equation 

a@ h2 ifr- = -~-A@ + V ( z ) $  
at 2m 



Validity of wKB approximtion 

where $(., t )  E L2(Rd, dx) and 

$4~. 0)  = $(+) exp   SO(^ (t 1 
Let S(x, t )  be a solution of the corresponding Hamilton-Jacobi equation 

1 
2m 

8,S(z, t )  + -(V& + V ( z )  = 0 

with initial values S ( z ,  0) = S&). Further, define 

PO(%) = W O ( d  

and let x(x0, t )  be the solution of the corresponding classical equation of motion 

a 2  1 
-x(zo, t )  = --V,V(z(xo, t ) )  
at2 m 

with initial values 

z@o, 0) = 5 0  

a 1 
-x(eo, at 0) = -po(xo), m 

Let xo(z, t )  be the inverse function of I(ZO, t )  and denote its Jacobian by 

Molzahn [6]  is slightly more general in considering a time-dependance of the potential 
V ( z ,  t),  and slightly more special in assuming 

SO(2) =Po. x PO E Rd . (13) 

One may indicate the dependence on the 'parameter' pa in the functions S(x,t;po), 
D(x, t ;  PO), and xo(ob, t; PO). The latter may be obtained by 

zdz, t; PO) = V,SCz, t ;  PO). (14) 

Hence $rkm can be completely specified if only S(z, t ;  PO) is known. It can be shown [6] 
that l/IwKB satifies an 'approximate Schradinger equation'. With the Hamiltonian operator 

(15) 
E2 

2m 
H = --A + V ( O )  
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d A’ 
dt 2m fi-qw,xs(Z, 1 )  = f f h ( z r  t )  -Er 

where 

From (16) one easily derives the estimate 

It is worthwhile noting that according to (18) and (17), an error estimate of the WKB- 
zpproximation can, in principle, be determined if only the classical problem is solved. But 
even then the task to calculate the  RH^ of (18) may become very complicated and a simpler 
estimate is desirable. 

Mol& derived such a simpler estimate but he had to impose severe restrictions on 
the class of potentials. We will formulate his resbrictions only for the special case d = 1 
and timeindependent potentials that will be used in later examples. 

Defiition. V E U iff 
(1) V is bounded and V E Cm(R), and 
(2) there exist U, K E (0.00) such that for all n E R  llV(”)(.)llm < UK”. 

It follows that V c U is real analytic and that U contains all functions V, the Fourier 
transform of which has a compact support. U is an Iw-algebra with the usual addition 
and multiplication of functions. It separates points, and hence approximates continuous 
functions on compact subsets (Stone-Weierstrass theorem). With the following definitions 

TH !-p K eU 

1 t’ 
U @ )  = -- 

f i T i - t ’  
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Molzahn obtains the result that, if V E U, 

(29) 

The RIB of (29) can be calculated by means of integrals involving only the initial 
wavefunction 4. The potential V only has an inhence on the estimate by means of 
the constants U and K. 

th [I@(.. 0 - h(.. 011 < C$(t)-  for t E a .  
m 

3. Extension of the class U of admissible potentials 

Before testing the estimate (29) in concrete examples, we have to extend the class U in 
such a way that (29) will remain true. To this end we consider a sequence V ,  E U and set 

fr= H. = - - A + V , .  
2m 

The dependence on H,, of the various wavefunctions will be indicated by a superscript. H, 
shall converge towards an operator H =-@*/2m)A+ V in a sense to be explained below, 
and the extended class ~ will consist of all such limits V .  

By triangle inequality 

In order to retain the result (29) the terms (1) and (3) should converge to 0 as n + CO, and 
(2) should approach a stable Molzahn estimate. We will consider the three terms separately. 

(1) Sufficient for the norm convergence @Hm + qH is the strong resolvent convergence 

(2) The obvious conditions for obtaining a stable Molzahn estimate for n + CO are 
H, + U ,  cf 1111 theorem 9.18. 

- 
lim K, = K E [0, CO) 

n-fm 

The first condition guarantees that the RHS of (29) can be chosen independently of n. 
The second condition implies that TH does not vanish in the limit n + CO. 

( 3 )  One has to invoke the theorem that the solution of an ordinary differential equation 
depends smoothly on its parameters. A closer inspection shows that sufficient condition 
will be 

(a) v E c4@) 
(b) V, ,  VV, and VVV,, converge pointwise towards V ,  VV and V V V ,  

The condition V,(x) + V ( x )  is also sufficient for strong resolvent convergence, 
H,, + H, if these operators have a common core. 
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We leave it to the reader to formulate a theorem which extends Molzahn's result to the 
larger class fi. It is difficult to say whether D is really an improvement of U. We only 
know two potentials which are in 0 but not in U; the linear and the quadratic one. These 
will be investigated in the next section. 

An altemative to extending the potential class is simply to include the quadratic pats 
of the potential into the unperturbed Hamiltonian. Recently Molzahn and Osborn [8] 
Coms [9] have obtained propagator cluster expansions for pertubations of (4, j)-quadratic 
operators, and conjectured tree-graph series for the action S have been extracted. However, 
an analogous error estimation seems not to be known. 

4. Examples 

4.1. The linearpotential 

We consider the one-dimensional linear potential 

V ( x )  = -mgx (34) 

and an initial wavefunction 

with normalization C = (2~r)-'/~A-''~. Then $ ( x ,  t )  and + w ~ ( x ,  t )  can be explicitly 
calculated (see [Z ] ) :  

+@,I )  = C A  J7ZmiG 1 exp [ - Azv+ + po>2] 

x exp { [ 1 6 A 6 ( F  + p0)'- 4Az(&, --x - $)' 
- ~ A z ~ ( ~ + ~ ) ( ~ ~ - - x - ~ ) ] / ( 1 6 A 4 + ~ ) )  m m2 

xexp E:[ [ - 16A4(mgt+p&) (to - x -  $) -SA4:(? +p0)' 

+ "'(eo m 

x exp - bmgt  + $Op& - -mg2t3 

--x - $)']/(16A4+ q}] m2 

[A ( 6 >I 
(x - @o/m)t - g t 2 / z  -to)' 

4A2 @WB(X, 2) = Cexp 

>> x exp (:(pox + (mgx - $ ) t  - Zgpor 1 2 '  - - m g ~  
6 (37) 
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After some lengthy calculation we obtain 

(38) 

Expanding (38) with respect to f yields 

II@(.. t )  - h K B ( . ,  t)ll = -- - (39) 

Next we approximate the linear potential by a family of potentials VA E U, h + 0, 

sin(kx) 
V , ( x )  = -mg- (40) h '  

Obviously 

(41) 

- m'gl KA = A x .  (42) 

IV:"'(x)l 6 TA." mlgl 

hence 

h 

It follows that K = lim K A  = 0 and TH = ( l / h ) m  + 00, 1 -+ 0. We conclude 

and the Molzahn estimate reads 

which is exactly the linear term of (39), see figure 1. 

Figure 1. The norm difference (38) and the Molzahn estimation (44) are plotted as a function 
of the dimensionless quantity x = @t/4Azm). 
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4.2. The harmonic oscillator 
We consider the potential 
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m 2 2  
2 

and the time evolution of a coherent state (see [4]) 

V ( x )  = -o x 

[ x  - Q cos(ot + a)]‘ - ixQa2 sin(ot + 8) 

iwt a2@. . -- +- 1[sin(2(wt + 8)) -sin(%)] 
2 4 

with 

and 

i n  co + - = Q e-i6. mo 

The WKB approximation is 

h ( x . t )  = -Cexp( cos(ot) 
1 X PO 

- g[- 2 cos(ot) -- m o  

m o  

We may calculate three different estimates. The exact n o m  differewe is 

( 4 3  + 0 ~ ) .  
J? 31& 

= --Ot + - 
4 512 

The estimate (18) according to the ‘approximate SchrCidinger equation’ reads 

Molzahn’s estimate is in this case 

(45) 

(49) 

(54) 

(55) 
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0.1 0.2 0.3 0.4 0.5 
w t  

Figure 2. The three estimates plotted as functions of or. (55) is the Molrahn estimation, (53) 
IB~IMII~S the approximate Shcdinger equation and (51) is the exact result 

For obtaining the latter we approximated V ( x )  = imo2x2 by VA(X)  = $"(sin(hx)/A)2 
for A -+ 0. It follows that 

and 

independent from A. The other conditions for extending the result of Molzahn to the class 
a are Pso satisfied. The result is gaphically represented in figure 2. 

4.3. Discussion 

The above figures show that, for both examples, Molzahn's estimate is 'almost' optimal, at 
least for small f/TH. The reason for this is twofold. First, Molzahn's estimate is exact with 
respect to the linear term in the t-expansion of [ [@ - &= 11. Second, this linear term is the 
dominating contribution for small f/TH, since the quadratic term vanishes in the examples. 

The question arises whether this result is only valid for the particular examples or 
generally true. We will now show the latter. 

First, we expand @ and @w= up to 0(f3)-tems (writing @O = @(O), etc) 

where, according to the definition (17) of g, 

Expanding the square root 
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we obtain 
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The quadratic term vanishes, because (golHgo) is real and 

hence 

is purely imaginary. The linear term can be shown to be identical with the linear term of 
Molzahn's estimate, using 

C,(4 = IllS"ll + O(t). (65) 

The foregoing considerations suggest the following ' d e  of thumb', which is not an exact 
error bound, but very simple and not confined to the restricted class of potentials U: 

if 

@ ( x ,  0) = W 3 e x p  -POX . (67) (1 ) 
The usefulness of this rule of thumb will be illusfrated by a further example. 

4.4. The sech2-poiential 

We consider the potential 

V(x) = -Vosechz (s) vo>o (68) 

representing an attractive potential well of depth VO and width a > 0. V is not contained 
in the Molzahn class U. Using the Taylor series of tanhx we obtain 

Hence V(m)(0) grows faster than U K m  (recall that Riemann's zeta function satisfies 
((n) --f 1 for n + 03). I t  is well known [3] that V admits a finite number of bound 
states which can be expressed in terms of the hypergeometric function. If we choose 

15 h2 vo = -- 
32 ma2 
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there are exactly two eigenvalues of H and the corresponding eigensolutions of the 
Schrodmger equation assume the simple form 

9 6  
~osh-~/'(x/2a) with w1 =--- @ I ( . T , f )  = - 1 
6 32 ma2 

1 co~h-~ '~(x/2a)  sinh(x/2a) e-"' with wz = 1 h  (72) 
32 ma2 ' @ d X ,  t )  = - J;?;; 

Choosing PO = 0 in (2), we take the superposition 

1 
*@7 0 = -(*I(.% 0 f @ d X ,  0) (73) 

as the exact solution to be approximated by @-. To obtain the latter we consider the 
solution of the classical equation of motion 

1/z 

and the classical action 

where the:tilde (-) denotes the choice of xo as the argument of a function (as opposed 
to x). From (74) we obtain 

Jsinhz(xo/2a) coS2(Bt/2a) + 1 

and, finally, 

In order to calculate ( @ I @ w ~ )  we choose xg as the integration variable and obtain 
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Figure 3. The norm difference for the hyperbolic potential as a function of ht/maZ, 

It turns out that the integral and hence 119 - 9-11 only depends on the dimen! 
variable 

t r = -  
TK 

where 

nless 

(79) 

is the classical caustic time. The integral (78) can only be numerically determined, see 
figure 3. For the t-linear term we obtain an anlaytical result 

which is numerically in accordance with (66). 

5. Explanation of the error of the WKE approximation 

The result of Molzahn is confined to the time interval It1 < A T H  % 0 . 8 T ~ .  It is well 
known [l] that $r- has to be modified for times greater than Tc, the time where the 
classical motion exhibits caustics. This is plausible if one construes @W~KB as the stationary 
phase approximation of the Feynman path integral representation of 9. Fort  > TC there are 
more than one paths joining (xo, 0) and ( x ,  t )  which make the classical action stationary. 
It remains to show that 

We will provide a heuristic argument. If V has a minimum at x = 0, V ( x )  % m/2w2x2, 
where mu2 = V"(0). For the quadratic potential it is known that TC = z / b .  Hence 
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Generally, it is clear that TC 6 52 since x + X O ( X ,  t )  is a diffeomorphism 161. 
We have seen that, for small t/TH. the main part of the error of WKB approximation 

is - @ w ~ l l  (ht /Zm)l~A@l~.  This term can be heuristically explained. The wm 
approximation can be associated with a classical ensemble of particles, all having momentum 
po at t = 0. These particles obey (8), (9) for xo in supp@. But the quantum initial data (5) 
has a momentum dispersion 8p obeying the uncertainty relation 

sq s p  3 h / 2 .  (84) 

If we consider a second classical ensemble satisfying (84), then these two ensembles will 
become significantly different after a typical time 

Now Sp can be bounded above by 

From these two relations we obtain an estimate for T, 

m f i m  T>- 2(6p)2 3 #J”ll-’ 

which is in agreement wit!! the time region where (66) indicates a poor approximation. 

of e and hm. Recall its definition (h = 1) 
These’hemistic considerations can be confirmed by comparing the Wigner transforms 

F ( x ,  p )  = ; - y )  @(x f y )  (88) ‘ S  
and that the Wigner transform maps Gaussians onto Gaussians and the quantum time 
evolution onto the classical one if the Hamiltonian is at most quadratic in P and Q; see, 
for example, [IO]. 

For the linear potential and @, I/IwKB according to (36), (37) we obtain the Wigner 
transforms 

and 

- 2A2(p + mgt - Po)’ . (90) 1 ( x  - (po/m)t  + +gtZ -cob)* 
n 2A2 

We see that F ‘swims’ with the classical flow in phase space, whereas Fwm represents a 
rigid motion of a Gaussian through phase space such that only its peak follows a classical 
path. 
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For the quadratic potential and coherent states the situation is a bit different because 
here F follows a rigid rotation in phase space whereas F- is (periodically) distorted: 

P .  cos(wt) - - sm(wt) - CO 
7c mo 

1 I - - ( p  cos(wt) + mwx sin(wt) - pol2 . 
a2 

In any case, it becomes obvious that the main t-linear pan of - @wmII is of purely 
kinematical nature and due to the unability of the WKB approximation of first order to 
correctly account for the diffusion of the wavepacket. It is completely independent of the 
potential, contrary to the folklore which says that the WKB approximation is good if the 
potential is sufficiently smooth. 

Of course the applicability of the WKB approximation requires t < Tc which according 
to (83) means that the potential must be slowly vming. 
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